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Abstract-Recent interest in the theory of elastic Cosserat surfaces suggested reconsideration of the
authors' theory of sandwich shells, as containing the essence of the difference between Cosserat-type and
ordinary two-dimensional shell theory, the incorporation of transverse normal stress deformation into the
equations of the two-dimensional theory, over and above the incorporation of transverse shear stress
deformation. In reviewing the earlier work the possibility of certain improvements and simplifications
became apparent. These, in addition to the fact that it seemed appropriate to indicate the relation of the
work in[2] to Cosserat elastic surface theory, led to the writing of the present paper.

INTRODUCTION

Recent work on the subject of direct formulations of two-dimensional theories for three
dimensional problems, with emphasis on the concept of a Cosserat surface[l], suggested a
reconsideration of the author's earlier work on sandwich-type shells [2].

In what follows we show that our earlier derivation of a two-dimensional sandwich-type
shell theory from a suitably idealized three-dimensional formulation contains in a natural way
what appears to be the essence of the difference between Cosserat-type elastic surface theory
and ordinary two-dimensional shell theory, to whit, an incorporation of the effect of transverse
normal stress deformation into the equations of the two-dimensional theory, over and above the
incorporation of the effect of transverse shear stress deformation.

The developments which follow are in the main equivalent to our earlier developments.
However, in reviewing our earlier work the possibility of certain improvements and sim
plifications became apparent. It is these improvements and simplifications, in addition to
recognition of the fact that sandwich-type shell theory as formulated by us does in fact contain
the essence of Cosserat elastic surface theory, which led to the writing of the present paper.

To indicate the nature of the following considerations it may be worthwhile to quote (with
some slight modifications in wording) from the Introduction to our earlier work[2], as follows.
"In this report an extension of the classical theory of small bending and stretching of thin
elastic shells is considered. Instead of a homogeneous shell we consider a shell constructed in
three layers: A core layer of thickness 2c with elastic constants Ee. Ge. Ve and two face layers
of thickness t with elastic constants Et, Gr. Vt• In the developments certain restrictive
assumptions are made, which somewhat limit the applicability of the results. In so doing
formulas are obtained which are as compact as possible while still describing the essential
characteristics of the sandwich-type shell." (Our reconsideration shows that the earlier for
mulas, while being "compact", were not in fact "as compact as possible".)

"The thickness ratio tic is assumed small compared to unity; at the same time the ratio
tEtlcEe is assumed large compared to unity. This latter assumption means that the face material
is so much stiffer than the core material that the contribution of the core layer to stress couples
and tangential stress resultants is negligible. It is known that for flat plates this assumption
necessitates the taking account of the effect of transverse shear deformation. The same would
be expected to be true for curved shells."

"A further effect ... is the effect of transverse normal stress deformation. We show that this
effect arises in a manner which is typical for shells and has no counterpart in plate theory. It may be
likened, roughly, to what happens in the bending of curved tubes."

tPreparation of this paper has been supported by the Office of Naval Research.
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STATICS OF SANDWICH-TYPE SHELL

In order to derive a complete system of equations we first consider the statics of the face layers
and of the core layer. Combination of the results obtained for these two components will lead to
those equations of equilibrium which hold for elements of a shell regardless of the constructional
nature of the elements, and in addition to relations which are associated with the sandwich-type
nature of the elements.

Coordinate system on shell. In formulating differential equations we use a curvilinear
coordinate system ~b ~2, (, such that ~l and ~2 are lines-of-curvature coordinates on the middle
surface of the composite shell, and ( the normal distance from this middle surface (Fig. I). The
linear element in this system of coordinates is of the form

(I)

Statics of face layers. The face layers are treated as shells of thickness t, with negligible
bending stiffness about their own middle surfaces. Because of this they are designated in what
follows as face membranes.

The middle surfaces of the face membranes are given with reference to the three
dimensional system of coordinates by (= ± (c + t12) "" ± c, with the linear elements on these
two middle surfaces given by ds 2 = a1

2(1 ± c1R 1)2 d~12 +a2
2(1 ± c/R2) d~t

The components of external load intensity on the upper and lower face membranes are
designated by Piu, qu and Pi!, q" respectively. The core layer stresses which act upon the two
membranes are designated by Ti(u, U(u, Ti(l, U(" and the stress resultants acting over the cross
sections of the membranes by N iju = Njiu and NUl = N jil (Fig. 2).

There are then three equations of force equilibrium for the elements of each of the two
membranes. Writing anu = an(l +cIRn ), ani = an(l- cIRn ), we have two tangential component

Fig. I.
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Fig. 2.

equations for forces in the direction ~b
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(2)

two analogous equations for forces in the direction ~2. and two equations for forces in the
normal direction.

(3)

Statics of core layer. Assuming that the components of stress O'b 0'2. T12 are negligible so
that only the transverse stresses 0'•• and Ti' need to be retained we have three differential
equations of equilibrium of the form

(4)

Integration of these gives

(5)

with O"m and Til:m being the values of 0'. and Til: for ( = o.
Statics of composite shell. In view of the fact that all face-parallel core-layer stresses are

neglected we have as expressions for stress couples M ij and middle surface parallel stress
resultants Njj•

(6)
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etc. with evident differences between N 12 and N 2\ as well as between M12 and M21 , In the same
way we have as expressions for components of external force and moment load intensity

q == ( 1+~J(1+~Jqu + (1- ~J(1- ~Jql

mn== c[(1+~J (1+~Jpnu -(1- ~J(1- ~JPnJ

Furthermore, a load term of the following form is encountered,

(7)

(8)

with this term representing the average transverse normal stress at any station of the shell, in
the event that the loads qu and q/ alone were responsible for this stress.

The above is complemented by expressions for transverse shear stress resultants Qj. We
find, with the help of eqn (5),

(9)

with a corresponding expression for Q2, and we note that eqn (9) in conjunction with the first
relation in (5) makes it possible to express the shear stress values 'Ti(u and 'Ti(/ in terms of Qi.

Differential equations of equilibrium for the composite shell are now obtained by suitable
combination of the above results.

Addition of the two relations in (2) gives as one equation of force equilibrium

(a2Nll),1 +(a lN21b +al.2N12 - a2.IN22 + QI +PI == O.
ata2 R)

Subtraction of the same two relations gives as one equation of moment equilibrium

(a2M ll),1 +(a\M21b +al.2M12 - a2.IM22 _ Ql + ml == O.
ata 2

(10)

(11)

Two analogous equations follow upon interchange of subscripts.
Two additional equations are obtained by adding and subtracting, respectively, the two normal

component equilibrium relations in (3).
Addition of the equations in (3), and observation of eqns (5H7), gives the conventional

equation of transverse force equilibrium,

(12)

A further equation, which is required for the sandwich-type shell, is obtained by subtracting
the second relation in (3) from the first relation. We find, making use of eqns (5) and (9),

(13)

We note that this sixth equilibrium equation for the elements of the composite shell has no
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relation to the conventional sixth equilibrium equation for shell elements which expresses the
condition of moment equilibrium about the normals to the middle surface. t

We obtain the middle surface normal moment equilibrium equation, now as a seventh
equilibrium equation, together with what amounts to an eighth equation of equilibrium, by using
the exact expressions for N 12, N2h M12, M2h which correspond to (6), in conjunction with the
fact that N I2u = N21u and N l2/ = N2I/. The resultant relations are

(14)

We note that while it is often assumed that the second of these relations is effectively
equivalent to a "constitutive" relation Ml2 = M2h there is no need and no obvious advantage, in
making such an assumption in this place. Beyond this we can say that, while the first relation in
(14) is entirely a statement of two-dimensional statics, the second may be thought of as a
consequence of a mixture of constitutive and equilibrium considerations, inasmuch as the form
of this relation does depend on information on the three-dimensional nature of the state of
stress, as previously discussed for the problem of the homogeneous shell [3].

STRESS STRAIN RELATIONS FOR COMPOSITE SHELL

We derive stress strain relations through the use of the theorem of minimum complementary
energy, as first employed by Trefftz for homogeneous shells without consideration of the effect
of transverse stresses [4].

Designating the complementary energy of face layers and core layers by TIt and TIc.
respectively, we obtain stress strain relations through the device of extremizing TIt +TIc, with
the constraint differential equations of equilibrium for the composite shell incorporated into the
variational equation through the device of Lagrange multipliers which then may be identified
with the appropriate displacement components, as follows.

+ 15II {[(a2N II ).1 +(a IN2Ib+ al,2Nl2 - a2.IN22 +ala2~:]ul

+ [(a2MII).1 +(a lM2lb +al,2Ml2 - a2,1Mn - ala2QI]~1

+[.. .]U2 +[.. ']~2+a la2[ N I2 - N 21 +~:2 - ~:I](II

+ala2[Ml2- M 21 + C2(~112_ ~:I)l~ + [(a2QI),1 +(alQ2b

(15)

In this, the Uj, w, ~i and (II are readily identified as effective components of translational and
rotational displacements. As regards the multiplier k it was noted in [2] that "there is no
immediate simple geometrical interpretation, [although] such an interpretation in terms of an
average transverse normal strain might be deduced." Similarly, there is no immediate simple
geometrical interpretation for the multiplier A.

It remains to express the complementary energy contributions TIl and TIc in terms of stress
resultants and couples and in terms of the transverse normal stress measure U,m'

tThe corresponding relation in [2] is there written without the Qrterms which appear above. The reason for this is the
"provisional" definition of U',m in eqn (33) which is not consistent with the significance of U',m in eqn (40). However, the
considerations which follow show that the Qj·terms in (13) may in fact be considered negligible.
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Assuming the face membranes to be isotropic we have as expression for TIt,

TIt = ff 2t~t [N I
2
,u+ NAu- 211NllUNnU +2(1 + II) Nf2U] (1+;J (I + ;Jala2d~ld~2

+ff 2t~t [Nfll+' .. ] (1- ;J (1- ;Ja1az d~, d~2' (16)

Equation (16) is transformed into an expression involving stress resultants and couples for the
composite shell by writing, on the basis of eqn (6),

( C) Mil2 1+R
z

N llu = N ll +-c-, (17)

In what follows we restrict attention to cases for which clR <t, l.t Therewith, and with the
definitions,

(18)

for stiffness coefficients, we have

(19)

Next, with the face-layer-parallel core stresses (TJ, (Tz, 7(2 assumed negligible, we have as
expression for TIc,

(20)

In this we now take the stresses in accordance with eqn (5), and we again neglect terms of
the order (IR in comparison with unity. Therewith and with the help of the defining relation (9),
we now have

In our earlier work[2] eqn (21) had been transformed by elimination of the OJ-derivative
terms through use of the transverse force equilibrium eqn (12), thereby introducing a term
N llIR.+N22IR2 -q into TIc. We now undertake a significant simplification of the results to be
obtained by showing that it is, in effect, rational to neglect the OJ-derivative terms in the above
in comparison with the OJ-terms themselves, as long as Be is of the same order of magnitude as
Ge, and as long as it is assumed that significant changes of stress resultants and couples of the
composite shell require distances of an order L which are large compared to 2c, that is, as long
as it is required that the solutions to be obtained are such as to justify the use of a
two-dimensional theory. For a proof of the correctness of our statement we need only observe
that with Oi,ilaj = O(OJL) the OJ-derivative terms in (21) are in fact small of relative order
(cIL)2 in comparison with the OJ-terms, and so may rationally be neglected in the expression for
TIc.

Remarkably, it is possible to justify neglect of the OJ-derivative terms in the last term of the
variational eqn (15) in a manner which is in every way consistent with the above. To see this we

tExcept for evaluation of the term N,',.(I +cIR,)(1+ c/R,) +N~,~I- c/R,) (1- c/R,) in (16). Remarkably, this term
reduces to the form 2N12N2I + 2M12M2I lc', without any restriction on the magnitude of c/R. Our statement here represents
a correction of the corresponding result in [2].
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take account of the moment eqn (11) in order to establish that Qj = O(M/L). From this it
follows that the Qj-derivative terms in the last term in (15) are in fact small of relative order
(C/L)2 in comparison with the Mjj-terms, consistent with the formulation in[2].

We refrain from rewriting eqn (15) with the appropriate expressions for IIt and IIe, and with
the two aforementioned simplifications involving neglect of Qj-derivative terms, and proceed to
state the stress strain relations for the composite shell which follow as a consequence of this
variational equation

Nil - VN22 = CElh

N12 = I:v (E21 +W + c
2:J,

M Il - VM22 = v(KIl- 2C~)'

M12 =~ (K21 +A+~)
1+ V R2 '

N 21 =~ (EI2- W - C2~),
1+ V R I

M22 - vMII = v(K22 - 2c~J,

M21 = 1~ v ( K12 - A- ;}

(22)

In these we have

Ell =!!.1! + a1,2U2,

at ala2

(23)

WI UI
'YI = /PI +~--R' etc.

al I

While Ell, En, Klh K22 are the usual expressions for midsurface normal strains and bending
strains, the quantities E12, E2h K12, K21 have no such direct geometrical significance, whereas
E12 + E21 and KI2 + K21 are midsurface shearing strain and twisting strain, respectively.

We make two observations in regard to the form of the stress strain relations (22). The first of
these is as follows.

We may use the two equilibrium relations (14) in order to eliminate wand A from the
expressions for N 12 , N2h M12, M21 • When this is done we obtain, except for terms of relative
order c2/R 2

,

(24)

and therewith

(25)

with corresponding expressions for N21 and M21 .t

tWe note that in the event that the second relation in (14) is replaced by the statement that M'2 = M21 we shall then have

M12 =M21 =~ I ~ v [K 12 + K21 + w(k-f.)]·
and the terms with Ain the expressions for N '1 and N21 will be absent. From this it follows that

and furthermore, with (I + v) (N 12 - N21 ) = C(E12 - 1'21 + 2w) = (I + V)(M21 /R2 - MI2/R ,) we may eliminate w from the
expressions for M 12 = M21 in such a way that, except for terms of relative order c2

/ R2•

M12 = M21 =~ I ~v[KI~+K21+ (k-k)EI2 ;E"J
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Our second observation concerns the appearance of the terms with k in the two relations
involving Mu and Mzz, and the relation between k and U,m in eqns (22).

We may, in order to eliminate the explicit appearance of the Cosserat-concept from the
above, proceed as follows. We combine the last equation in (22) with the simplified version of
the Cosserat-type equilibrium eqn (13), in order to obtain the relation k = (MuIR 1+ MdRz)/Ee.

We introduce this result into the equations involving Mu and M22 in (22) and have therewith as
"conventional" stress strain relations

(26)

It is evident, as first noted in[2J, that there will be significant effects of the transverse normal
stress deformability of the core layer on the bending stiffness of the composite shell whenever
Ee is small enough to result in the order of magnitude relation (tcIRZ)(E,/Ee ) = 0(1).
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